新闻分类

产品分类

联系我们

迪晟能源

联系人:张女士

电话:18923848794

邮箱:sales@desunpv.com

联系人:张小姐

电话:18138279558

邮箱:linda@desunpv.com

电话:0755-2919-1169/1189

地址:深圳市龙华区观澜街道新澜社区观光路1301号-1号、2号、3号


钙钛矿太阳能电池原理

您的当前位置: 首 页 >> 资讯中心 >> 技术知识

钙钛矿太阳能电池原理

发布日期:2025-11-21 00:00 来源:http://www.desunpv.com 点击:

钙钛矿太阳能电池原理

1.png 

在接受太阳光照射时,钙钛矿层首先吸收光子产生电子-空穴对。由于钙钛矿材激子束缚能的差异,这些载流子或者成为自由载流子,或者形成激子。而且,因为这些钙钛矿材料往往具有较低的载流子复合几率和较高的载流子迁移率,所以载流子的扩散距离和寿命较长。

然后,这些未复合的电子和空穴分别被电子传输层和空穴传输层收集,即电子从钙钛矿层传输到等电子传输层,最后被FTO收集;空穴从钙钛矿层传输到空穴传输层,最后被金属电极收集,当然,这些过程中总不免伴随着一些使载流子的损失,如电子传输层的电子与钙钛矿层空穴的可逆复合、电子传输层的电子与空穴传输层的空穴的复合(钙钛矿层不致密的情况)、钙钛矿层的电子与空穴传输层的空穴的复合。要提高电池的整体性能,这些载流子的损失应该降到最低。

最后,通过连接FTO和金属电极的电路而产生光电流。

钙钛矿太阳能电池的发展方向

2.png 

1、提高电池转换效率

转换效率是衡量太阳能电池性能最重要的指标,目前得到认证的最高电池转换效率已经达到25%。限制太阳能电池转换效率提升的瓶颈在于入射光的大部分能量被反射或者透射损耗掉,而只有与吸光层材料能隙相近的光才能被吸收转化为电能。因此,提高电池转换效率的关键在于改善电池的能带结构。除了上文中提到的通过调控钙钛矿材料中的离子基团来调节能隙,制备出不同能隙的多结太阳能电池也是该领域研究的重要方向之一。

除此之外,减少电子和空穴在传输过程中的复合来提高传输速率,也是提高转换效率的重要途径。

1)界面调控。由钙钛矿电池工作机理可以看出,钙钛矿太阳能电池转换效率的提升不仅取决于光的吸收能力,还取决于载流子在钙钛矿结构中的传输速率。

2)改进钙钛矿电池的制备工艺。钙钛矿太阳能电池作为一种新型的薄膜太阳能电池,其制备工艺与其他薄膜电池类似,例如旋转涂覆法(溶液旋涂法)、真空蒸镀法(气相法)等。无论何种制备方法都以制备高纯度、缺陷少、高覆盖率、致密的钙钛矿层薄膜与传输层薄膜为目的,其本质在于改善不同层结构之间的电学接触,降低缺陷密度,减少载流子在传输过程中的损耗,从而实现高的电池转换效率。

3)新材料和新电池结构的尝试。目前,钙钛矿太阳能电池最常用的材料是用CH3NH3PbI3作为光吸收层,用TiO2作为电子传输层,用spiro-OmetaD作为固态空穴传输层,最初的转换效率达到了8.3%。为了进一步提高太阳能电池的转换效率,突出钙钛矿材料的优势,人们开始在太阳能电池的不同结构上使用新材料,或者设计新的电池结构,期望得到突破。

总体来说,无论是新材料的使用,还是新器件结构的改进,各种方法虽然都得到了较好的电池转换效率,但相比传统结构的钙钛矿太阳能电池来说仍然略低,不过从成本、稳定性、环境友好等角度考虑,都具有很高的研究价值。

3.png 

2、提高太阳能电池稳定性

有机金属卤化物钙钛矿材料在潮湿环境和光照条件下稳定性较差,容易发生分解而造成电池效率下降甚至失效,因此除不断提升转换效率外,目前很多研究也致力于提高太阳能电池的稳定性。钙钛矿电池的稳定性受到温度、湿度等多种环境因素的制约。改善钙钛矿电池的稳定性有两种思路:一种是提高钙钛矿材料本身的稳定性,另一种是寻找合适的传输层材料使电池与环境隔绝,抑制钙钛矿材料的分解。

在前一种方法中,Smith等人以一种二维混合钙钛矿材料(PEA)2(MA)2[Pb3I10](PEA=C6H5(CH2)2NH3 ,MA=CH3NH3 )作为吸收材料(结构如图4所示),该结构可通过旋涂沉积形成且无需高温退火。和普通三维钙钛矿材料(MA)[PbI3]相比,二维钙钛矿电池在室温潮湿环境下放置46天而不引起性能的明显下降,具有很好的稳定性。但目前可以替代ABX3中各组分的原子/原子团的选择很有限,相关研究报道也比较少。近年来更多的研究集中在后者,即寻找合适的传输层材料。

a)两种晶体结构示意图,其中A和B分别为三维材料(MA)[PbI3]和二维材料(PEA)2(MA)2[Pb3I10]的结构;

b)不同薄膜在潮湿环境下经过相同时间后XRD谱,其中1,2a,2b分别为二维材料薄膜、旋涂质量较差的三维材料薄膜和旋涂质量较好的三维材料薄膜在第二种方法中,研究者致力于寻找更好的空穴传输材料来提高钙钛矿太阳能电池的稳定性。好的空穴传输材料能使激子具有更长的寿命和量子产率,延长电池的使用寿命。钙钛矿电池中通常使用的空穴传输材料为p型掺杂的spiro-OmetaD。通过改变空穴传输材料来提高材料稳定性的思路有两类:第一类是用其他材料来替换原有的空穴材料;另一类是向该空穴材料中加入添加剂或者替换原有的p型添加剂。

4.png 

a)使用四硫富瓦烯衍生物(TTF-1)和环二芴(spiro-OmetaD)作为空穴传输材料的两种电池的稳定性对比;

b)添加PDPPDBTE电池与原材料电池的稳定性对比;

c)采用不同的掺杂剂后电池的稳定性;

d)不同XTHSI在3个月后的电池效率变化(其中X代表金属元素(如Li,Co,Ir),THIS代表二(酰基三氟甲烷)酰亚胺)。

在第二类方法中,p型添加剂的引入可提高载流子浓度,进而减少串联电阻及界面处的电荷传输阻抗.目前效果较理想的掺杂剂是LiTFSI(锂基二(酰基三氟甲烷)酰亚胺)。但在含氧环境中,氧气会消耗空穴传输层和TiO2表面的锂离子,使光电流降低、电阻升高,降低电池的稳定性,因此寻找更好的添加剂不仅可以起到提高效率的效果,还可以进一步提高稳定性.利用其他元素来替换金属Li是目前研究的热点之一。

5.png 

3、实现钙钛矿太阳能电池的环境友好化

由于含铅材料对环境的不友好性,研究者们在努力实现无铅化,但相应会带来电池转换效率的降低.最直接的方法是利用同族元素(如Sn)来代替Pb元素。在MAXI3材料中,CH3NH3SnI3的能隙仅为1.3eV,远低于CH3NH3PbI3的1.55eV,可以使吸收光谱发生红移。采用CsSnI3作为光吸收材料,并加入SnF2作为添加剂也以减少缺陷密度,提高载流子浓度,进而提高电池效率。这两种替代的吸收材料的吸收光谱发生明显红移,可以吸收更宽波段的入射光。

从解决环境污染但又不牺牲电池转换效率的角度出发,Chen等人提出了另一种思路,即回收汽车电池来提供铅源。由于汽车电池中的铅源具有相同的材料特性(如晶体结构、形貌、吸光性和光致发电性能)和光电性能,既提供了钙钛矿材料制备所需的铅源,又解决了废旧含铅电池无法妥善处理的问题,因此具有一定的实际应用价值。

6.png 

结论

钙钛矿太阳能电池目前还处于发展初期,如何实现钙钛矿太阳能电池的大面积连续制备和除铅工艺是现在面临的一个重要问题。但钙钛矿太阳能电池的电池转换效率有非常大的提升空间,其转化效率上线高于现有单晶硅太阳能板不少,另外钙钛矿材料非丰富廉价,相比于硅的提成有更低的成本空间。总的来说钙钛矿将会是下一个阶段太阳能板的主要方向。

0-1 .png

相关标签:太阳能板、机器人太阳能板、光伏清洁机器人太阳能板、太阳能板定制、SMT贴片太阳能板、柔性太阳能板、单晶硅太阳能板

近期浏览:

深圳市迪晟能源技术有限公司
联系我们

联系人:张女士                   电 话:18923848794 

邮   箱:sales@desunpv.com

联系人:张小姐                   电   话:18138279558

邮 箱:linda@desunpv.com 

电 话:0755-2919-1169/1189

手机官网

23-2.jpg


Copyright © 深圳市迪晟能源技术有限公司专注太阳能板定制,单晶 、SMT、玻璃、柔性等及太阳能折叠包生产定制。
粤IC备16064074号  Powered by 祥云平台  技术支持: 华企立方